L^2-concentration for a coupled nonlinear Schrödinger system
نویسندگان
چکیده
منابع مشابه
Existence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
Coupled Nonlinear Schrödinger Systems with Potentials 3
Coupled nonlinear Schrödinger systems describe some physical phenomena such as the propagation in birefringent optical fibers, Kerr-like photorefractive media in optics and Bose-Einstein condensates. In this paper, we study the existence of concentrating solutions of a singularly perturbed coupled nonlinear Schrödinger system, in presence of potentials. We show how the location of the concentra...
متن کاملRogue waves for a system of coupled derivative nonlinear Schrödinger equations.
Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes ...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملNew existence results for a coupled system of nonlinear differential equations of arbitrary order
This paper studies the existence of solutions for a coupled system of nonlinear fractional differential equations. New existence and uniqueness results are established using Banach fixed point theorem. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some illustrative examples are also presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2019
ISSN: 1847-120X
DOI: 10.7153/dea-2019-11-04